Cardiac overexpression of catalase antagonizes ADH-associated contractile depression and stress signaling after acute ethanol exposure in murine myocytes.
نویسندگان
چکیده
Alcohol dehydrogenase (ADH), which oxidizes ethanol into acetaldehyde, exacerbates ethanol-induced cardiac depression, although the mechanism of action remains unclear. This study was designed to examine the impact of antioxidant catalase (CAT) on cardiac contractile response to ethanol and activation of stress signaling. ADH-CAT double transgenic mice were generated by crossing CAT and ADH lines. Mechanical, intracellular Ca(2+) properties and reactive oxygen species generation were measured in ventricular myocytes. ADH-CAT, ADH, CAT and wild-type FVB myocytes exhibited similar mechanical and intracellular Ca(2+) properties. ADH or ADH-CAT myocytes had higher acetaldehyde-producing ability. Ethanol (80-640 mg/dl) suppressed FVB cell shortening and intracellular Ca(2+) transients with maximal inhibitions of 43.5 and 45.2%, respectively. Ethanol-induced depression on cell shortening and intracellular Ca(2+) was augmented in ADH group with maximal inhibitions of 66.8 and 69.6%, respectively. Interestingly, myocytes from CAT-ADH mice displayed normal ethanol response with maximal inhibitions of 46.0 and 47.2% for cell shortening and intracellular Ca(2+), respectively. CAT transgene lessened ethanol-induced inhibition on cell shortening (maximal inhibition of 30.3%) but not intracellular Ca(2+). ADH amplified ethanol-induced reactive oxygen species generation, which was nullified by the CAT transgene. Western blot analysis showed that ethanol reduced ERK phosphorylation and enhanced JNK phosphorylation without affecting p38 phosphorylation. The ethanol-induced changes in phosphorylation of ERK and JNK were amplified by ADH. CAT transgene itself did not affect ethanol-induced response in ERK and JNK phosphorylation, but it cancelled ADH-induced effects. These data suggest that antioxidant CAT may effectively antagonize ADH-induced enhanced cardiac depression in response to ethanol.
منابع مشابه
Overexpression of alcohol dehydrogenase exacerbates ethanol-induced contractile defect in cardiac myocytes.
Alcoholic cardiomyopathy is characterized by impaired ventricular function although its toxic mechanism is unclear. This study examined the impact of cardiac overexpression of alcohol dehydrogenase (ADH), which oxidizes ethanol into acetaldehyde (ACA), on ethanol-induced cardiac contractile defect. Mechanical and intracellular Ca(2+) properties were evaluated in ventricular myocytes from ADH tr...
متن کاملInfluence of gender on ethanol-induced ventricular myocyte contractile depression in transgenic mice with cardiac overexpression of alcohol dehydrogenase.
Acute ethanol exposure depresses ventricular contractility and contributes to alcoholic cardiomyopathy in both men and women chronically consuming ethanol. However, a gender-related difference in the severity of myopathy exists with female being more sensitive to ethanol-induced tissue damage. Acetaldehyde (ACA), the major oxidized product of ethanol, has been implicated to play a role in the p...
متن کاملInvolvement of AMPK in Alcohol Dehydrogenase Accentuated Myocardial Dysfunction Following Acute Ethanol Challenge in Mice
OBJECTIVES Binge alcohol drinking often triggers myocardial contractile dysfunction although the underlying mechanism is not fully clear. This study was designed to examine the impact of cardiac-specific overexpression of alcohol dehydrogenase (ADH) on ethanol-induced change in cardiac contractile function, intracellular Ca(2+) homeostasis, insulin and AMP-dependent kinase (AMPK) signaling. M...
متن کاملCardiac overexpression of alcohol dehydrogenase exacerbates cardiac contractile dysfunction, lipid peroxidation, and protein damage after chronic ethanol ingestion.
BACKGROUND Alcoholic cardiomyopathy is manifested as ventricular dysfunction, although its specific toxic mechanism remains obscure. This study was designed to examine the impact of enhanced acetaldehyde exposure on cardiac function via cardiac-specific overexpression of alcohol dehydrogenase (ADH) after alcohol intake. METHODS ADH transgenic and wild-type FVB mice were placed on a 4% alcohol...
متن کاملAlcohol Dehydrogenase Protects against Endoplasmic Reticulum Stress-Induced Myocardial Contractile Dysfunction via Attenuation of Oxidative Stress and Autophagy: Role of PTEN-Akt-mTOR Signaling
BACKGROUND The endoplasmic reticulum (ER) plays an essential role in ensuring proper folding of the newly synthesized proteins. Aberrant ER homeostasis triggers ER stress and development of cardiovascular diseases. ADH is involved in catalyzing ethanol to acetaldehyde although its role in cardiovascular diseases other than ethanol metabolism still remains elusive. This study was designed to exa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 99 6 شماره
صفحات -
تاریخ انتشار 2005